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LETTER TO THE EDITOR 

Chapman-Kolmogorov equation for Markov models of 
epitaxial growth 

A K Myers-Beaghton and D D Vvedensky 
The Blacken Laboratory and Semiconductor Materials IRC, Imperial College, London 
SW7 2BZ, UK 

Received 27 February 1989 

Abstract. We outline a probabilistic approach to modelling epitaxial growth, whereby we 
solve for the complete probability distribution of the surface using the Chapman- 
Kolmogorov equation. We describe a simple Markov growth model which is analytically 
solvable using this approach and exhibits damped oscillations of the step density. The 
model specifies that perfect layer growth occurs within subsections of an adjustable size 
on an atomically smooth surface. Increasing the size of a subsection increases the amplitude 
of the oscillations in the step density and decreases the rate of decay of the oscillations. 
The mechanism for the damping of the oscillations is shown to be phase incoherence 
between growth occurring in different subsections. 

The preparation of sophisticated semiconductor devices using molecular-beam epitaxy 
(MBE) demands a thorough understanding of the growth processes occurring at the 
surface. Experimentally, the most widely used probe of the morphology of the growth 
front during epitaxy is reflection high-energy electron diffraction (RHEED) (Neave e? al 
1983, Van Hove e? a1 1983). Using this technique, the time evolution of the surface 
structure may be followed by monitoring the intensity of the reflected beam. Utilisation 
of MBE to grow better devices would be greatly facilitated by theoretical models which 
could elucidate the important growth mechanisms and allow unambiguous interpreta- 
tion of RHEED measurements. However, due to the complexity of the growth process, 
most existing theoretical models are based on mean-field theories in which kinetic rate 
equations are solved for average quantities such as the coverage of a layer (Weeks and 
Gilmer 1979, Venables et a1 1984, Stoyanov and Michailov 1988, Cohen et a1 1989). 

In this letter we propose a new approach to modelling of epitaxial growth: the use 
of the Chapman-Kolmogorov equation to find the probability of a configuration of 
the surface atoms. There are several advantages of this approach over the mean-field 
approaches: (i)  the complete probability distribution of the surface is obtained rather 
than an average quantity; thus it is possible to calculate quantities related to the 
microscopic arrangement of atoms, such as the surface step density; (ii) since the 
Chapman-Kolmogorov equation makes no assumption concerning the equilibrium 
nature of the system, it is ideally suited to the far-from-equilibrium growth conditions 
typically encountered in MBE; (iii) a formally exact description of the microscopic 
kinetics is an appropriate starting point for the systematic derivation of modified 
diffusion equations, especially using techniques developed for birth-death processes 
(Gardiner 1985), of which MBE is an example (Cohen et al 1989). Description of the 
approach and its application to several growth models is given below. 
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The substrate is composed of sites arranged in a simple cubic lattice oriented in a 
(100) direction. The total number of sites on the substrate is N ;  the lattice is square 
with sites along a side. Periodic boundary conditions are imposed parallel to the 
substrate. Prior to growth the substrate is flat with all sites unoccupied. During growth, 
atoms impinge on random substrate sites at regular time intervals of 7, ; no evaporation 
or diffusion occurs. Growth is therefore modelled as a series of discrete events at times 
mr, (m = 1 , 2 , .  . .), each event being the deposition of one atom on the surface. The 
time for deposition of a monolayer is 7, where 7 = NT,. Attachment of atoms is assumed 
to follow the solid-on-solid (SOS) model (Weeks and Gilmer 1979) where vacancies 
and overhangs are forbidden. 

The state of the lattice during growth is characterised by a matrix H, where matrix 
element hi,j is the height of the site at [ i ,  j ]  (also the number of atoms deposited on 
that site if H = 0 at the commencement of growth). We introduce the probability of a 
particular configuration H after a total of m atoms have been deposited: 

P(H; m )  = ~ ( h ~ , ~ ,  A; m )  (1) 

where fi denotes the matrix of all h not explicitly written. 
For the above model, a configuration at time m7, differs from one at ( m  - l ) ~ ,  

only by the height of one lattice site, since in one time step, one atom is deposited. 
The probability of a configuration at time m.r, is dependent only on the probabilities 
of configurations at (m - l ) ~ ,  which differ from that at m7, by the height of one lattice 
site (decreased by one). The growth of the lattice is therefore a Markov process and 
one may write the Chapman-Kolmogorov equation (Gardiner 1985) for the probability 
of a given configuration H: 

P(H; m ) = x  W(HIHi; m - l ) P ( H i ;  m - 1 ) .  
I 

In the above equation, W (  H 1 H i  ; m - 1) is the transition probability between configur- 
ation Hi and configuration H in one time step. The sum in (2) is over all possible 
configurations Hi that may give rise to H. 

From the complete probability distribution of the surface it is possible to derive 
several useful quantities in terms of reduced probabilities. One of these is the one-site 
probability ~ ( h , ~ ;  m) that a site at [ i ,  j ]  will have height hi,j after m atoms have been 
deposited: 

When the probability of a site having height h is independent of position, the fractional 
coverage of layer h is given by zr=h p ( n ;  m). 

The two-site probability that two neighbouring sites at [ i, j ]  and [ i + 1, j ]  will have 
heights h , ,  and after m atoms have been deposited is: 

T N  fl m 

P ( h , j ,  hi+I,j; m )  = c 1 c ( l  -ak,iaI,j)P(hk,/, h k + l , / ,  A; m ) .  (4) 
k = l  i = l  h k , , = 0  

It is desirable to compare the morphology of the growing surface given by the 
theoretical model with that observed by temporal oscillations in the specular RHEED 

intensity during epitaxial growth. The step density of the growing surface has been 
demonstrated to be an excellent qualitative representation of RHEED intensity oscilla- 
tions (Clarke and Vvedensky 1987a, b, c, 1988). The surface step density is calculated 
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as the number of steps formed parallel to the surface by neighbouring sites of different 
heights, and from (4) is given by 

In the following sections we will propose a simple model, the local perfect layer 
model, and calculate the probability distribution for the surface, the one- and two-site 
probabilities, and the surface step density using the above approach. However, first 
it is instructive to consider two extreme cases of the local perfect layer model, random 
deposition and perfect layer growth. 

Random deposition. In this extreme of growth, atoms impinge randomly on the lattice 
sites and remain at the point of initial attachment. No diffusion of the deposited atoms 
to other sites is allowed. Thus, prior to completion of one layer, growth of higher 
layers may begin. This model corresponds roughly to low-temperature epitaxial growth, 
in which case newly deposited adatoms do not have sufficient mobility to migrate from 
their initial positions. 

The Chapaman-Kolmogorov equation for random deposition is 

where the superscript (1) refers to random deposition and the subscript N refers to 
the total number of sites in the lattice. The solution to this equation for the initial 
condition PX'(0; 0) = 1 is 

m !  
PC'(H; m )  = &n,X;"=, h, . N" U,",, ( h i ) !  (7)  

Using (3) and (7), we obtain an expression for the one-site probability of a site having 
height h : 

if m < h. 

In order to calculate the surface step density, we need the two-site reduced probabil- 
ity, h i + l , j ;  m). Since the probability of two sites having heights hi,j and hi+l , j  
is the same in the x and y direction, we will henceforth reduce the two subscripts on 
h to one. The two-site probability is 

if m < hi + h i + l .  

Using ( 5 )  for the step density and (9) for the two-site probability we obtain 

where mz = m / 2  - (m mod 2)/2 is the largest integer less than or equal to m / 2 .  



L470 Letter to the Editor 

Perfect layer growth. In this extreme, an impinging atom must go into the highest 
unfilled layer. Thus growth proceeds as the sequential filling of successive monolayers. 
Only two heights are possible on the lattice at a given time, the height of the partially 
filled layer and the height of the completely filled layer exposed directly beneath it. 
This case corresponds approximately to growth at high temperatures, in which case 
newly deposited atoms have sufficient mobility that they are able to search for and fill 
depressions in the surface. 

Due to the successive filling of monolayers characteristic of perfect layer growth, 
only the top layer will be incomplete and will have f filled sites where f =  
1 + [( h'"' - 1 )  mod( N ) ] ,  and h'"' = X i , j  h i , j  is the total number of atoms on the surface. 
The Chapman-Kolmogorov equation for the probability of a configuration H is 

where q = [ (m - 1 ) /  NI - ( 1 /  N ) [  (m - 1) mod NI.  The solution to this equation for 
P$)(o; 0) = 1 is 

f! ( N  -f) ! 
P$'(H; m) = 8hlo',m s 

N !  
For the one-site probability we obtain the simple result 

where j = (m/ N )  - ( 1 /  N ) (  m mod N). (Note that j and j + 1 are the only two heights 
possible on the surface at time ma.) 

The two-site probability for perfect layer growth is found to be 

( a h , + l  ,h ,+ l  a h , ,  j $- - l ,h ,+ l  - 1 ,  j )  
m mod N)( N - m mod N )  

N ( N - 1 )  
+ ( ( N -  m mod N ) ( N -  1 - m mod N) 

N ( N - 1 )  ) %,h,+1%.j 

Sh,,h,+l %- 1.j 

(m mod N)( m mod N - 1 )  +( N ( N - 1 )  

Substitution of the above expression into definition ( 5 )  of the surface step density yields 
4( m mod N)( N - m mod N) 

N ( N - 1 )  
SE)( m )  = 

Local perfect layer growth. We consider a growth model intermediate between the two 
extreme cases of random deposition and perfect layer growth. In this model, the 
surface is divided into square subsections each containing n sites, with sides & in 
length. (m must be an integer multiple of &.) There are a = N / n  of these subsec- 
tions. We specify that within each subsection perfect layer growth occurs. Thus, an 
atom impinging randomly on a subsection must go into the lowest unfilled layer in 
that subsection, and within each subsection only two heights may coexist at a given 
time. Although growth within each subsection is perfect, growth in different subsections 
is uncorrelated and proceeds at different rates. Note that for n = 1, a = N, the model 
reduces to that of random deposition, while for n = N, a = 1 ,  the model becomes 
perfect layer growth on a lattice of N sites. 
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Since perfect layer growth occurs in each subsection, only the top layer of each 
subsection k (k = 1,2, .  . . , a) is incomplete and will have fk filled sites where fk = 
1 + [( hfkot - 1) mod( n)]  and hfkot = x:!,,k-,,+l hi is the total number of atoms in the 
subsection k (Observe that sites are no longer indexed by i, j but for convenience are 
numbered by subsection so that i = 1,. . . , n for atoms in subsections 1,. . . , n respec- 
tively.) The Chapman-Kolmogorov equation for the probability of a configuration H 
is 

where the first subscript, N, denotes the total number of sites on the substrate and the 
second subscript, n, is the total number of sites in a subsection, and 

The solution to this equation with P$,JO; 0) = 1 is 
qk = [(hfkot- l ) /n ]  - (l/n)[(hfkot - 1) mod n]. 

m! fi (x)!(n-A)! 
PE,),,(H; m) = &n,ZT=,h)p' a" n;=, (h:pt)! j = 1  n! 

Recognising that the one-site probability p$n(hi , j ;  m) is the same for any location 
( i ,  j )  on the lattice we derive 

m ! ( a - l ) " - ' [ (  1 -- km;dn) a h , j +  (km;dn) - a h - l , j  ] 
pE,)n(h; m ) =  E 

k = O  k!(m - k)!a" 
where j is as defined as for (13). 

Unlike the one-site probability which has no dependence on position of the site, 
the two-site probability pE,)n(h4j, h i + l , j ;  m) is not the same for any two neighbouring 
sites on the lattice. For two neighbouring sites both located in the sume section where 
perfect layer growth occurs, the two-site probability will be different from when the 
neighbour sites belong to diferent subsections. We will denote the two-site probability 
for neighbours in the same lattice as p$ri(hi . j ,  hi+l,j; m )  and for neighbours in different 
subsections as pE:i(hi , j ,  h i+ l , j ;  m). 

Neighbour sites at [ i,j] and [ i + l,j] in the x direction (or [ i, j] and [ i, j + 13 in the 
y direction) are thus divided into two classes: neighbours belonging to the same 
subsection, and those belonging to two adjacent but different subsections. This is 
illustrated in figure 1 where sites within the shaded subsection are labelled 1 and those 
in adjacent subsections are labelled 2. Inspection of the diagram shows that for each 
subsection, there will be 2( n - 6) interactions between sites at [ i, j] and [ i + l , j ]  (or 
[ i, j] and [ i, j +  11 in the y direction) of the type 1 : 1, and 2 6  of the type 1 : 2. The 
exception to this case is when n = N, in which case due to periodic boundary conditions 
there are no interactions of type 1 : 2, and therefore there are N interactions of type 
1 : 1. To obtain the total number of each type of interaction for the entire lattice, it is 
necessary to multiply the above values for one subsection by a = N/n,  the number of 
subsections. For convenience we therefore define two functions giving to the number 
of interactions of each of the two types (normalised by division by N). Denoting 
wl(n) for 1 : 1 interactions and wz(n)  for 1 : 2 interactions, then 
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X 

Y 

Figure 1. Two-dimensional lattice in local perfect layer growth illustrating interaction 
between sites in the same section and sites in adjacent but different subsections. The 
number of sites in the subsection for the above diagram is n = 16; the number of 1 : 1 
interactions is 2( n -&) = 24; the number of 1 : 2 interactions is 2& = 8. 

Thus we may write the expression for the surface step density ( 5 )  as 

sg,)n(m) = f 2 ( w ( n ) p ~ h i ,  hi+l; m ) +  W 2 ( n ) p ' 3 b ' ( h i ,  h i + ] ;  m)) (20) 
h , = O  h , + l = O  

h , + i f h ,  

where we have abbreviated the two subscripts on x denoting x , y  position to one 
subscript, since the two-site probabilities are the same in the x or y direction. 

The next step is to find the values of the two-site probabilities P'~"' (  h i ,  h i+l  ; m )  and 
p(3b'( hi,  hi+l ; m). First we focus on P'~"'(  hi ,  hi+,  ; m). Since in this case hi and hit1 
are in the same section, the two-site probability for a given number of atoms k falling 
into a section is simply p'," ( h i ,  h i + l ;  k), the solution for perfect layer growth on a 
lattice of n sites. Since k = 0, 1,2, . . . or m, we must average over all possible k, weighted 
by the probability that k atoms will fall into a subsection after a total of m atoms are 
deposited over the entire lattice: 

m 

pi3"'(hi,  h i + , ;  k) = p? ' (k ;  m)p(,2'(hi, h i + l ;  k). 
k=O  

Secondly we must find the value of p ( 3 b ) ( h i ,  h i + ] ;  m). This is more complicated 
since hi and hi+l refer to sites in adjacent but different sections. After a total of m 
atoms are deposited, k = 0, 1,2, . . . or m atoms may fall into a certain subsection, and 
consequently I = 0, 1,2, . . . or m - k atoms may fall into an adjacent subsection (given 
that k have dropped into the first subsection). Since growth in each of the two adjacent 
subsections is independent, the two-site probability of neighbouring sites having heights 
hi and hi+l is given as the product of the individual one-site probabilities for pedect 
layer growth of a site having height hi (after k atoms have fallen in a section of n 
atoms) and of a site having height hi+, (after 1 atoms have fallen in a section of 
n atoms). This product of perfect layer one-site probabilities must then be averaged 
over all possible k and 1, weighted by the likelihood of k and 1 atoms falling in adjacent 
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subsections: 
m m-k 

k = O  1=0 
pob)(hi, h i + l ;  m ) =  p!'(k; m)pL2'(hi, k)  c p ! l l ( l ;  m-k)pL2'(hitl, I). (22) 

The step density is now known entirely as a function of known solutions for the 
cases of random deposition and perfect layer growth. Substituting equations (8), (13), 
(21) and (22) into (20), we obtain the equation for the surface step density for local 
perfect layer growth: 

where k ,=(kmod n ) /n , I ,= ( lmodn) /n , j=  k/n-k, ,andj '=l /n- l , .  Asnincreases 
and the sections where perfect layer growth occurs become larger, the weighting of 
the first term in the equation increases relative to the other terms, and the solution 
increasingly resembles that for perfect layer growth, namely marked oscillations. As 
n decreases and the subsection become small, the contribution of the first term to the 
solution becomes progressively less, and the solution approaches the smoothly decaying 
curve characteristic of random deposition. The step density is plotted in figure 2 as a 
function of time and n. 

Physically, the local perfect layer growth model corresponds approximately to a 
situation whereby an atom impinging upon the surface is allowed to sample an area 
of the lattice before coming to rest on the most stable site. In our model, an energetically 
favourable site is assumed to be one in the lowest unfilled layer, where the atom would 
tend to have more nearest neighbours and thus be more strongly bound than if it were 
perched atop a lone cluster. Once an atom is incorporated, however, no further 
movement is allowed. Homoepitaxial low-temperature growth of silicon and ger- 
manium exhibits damped oscillations in the RHEED intensity which show a marked 
resemblance to the curves in figure 2 (Aarts et a1 1986). Since growth occurs at 
temperatures where diffusion is unlikely, it has been proposed (Clarke and Vvedensky 
1988) that a newly arrived Si or Ge adatom forms a mobile precursor state which is 
able to sample a small portion of the surface before becoming incorporated into the 
lattice. Though greatly simplified, our model incorporates the two essential features 
of no diffusion and a mobile precursor state characteristic of Si and Ge growth at low 
temperatures. 

In our analytical model, the origin of the damping of the oscillations is readily 
elucidated. At the beginning of growth, the large majority of the subsections reach 
monolayer completion at the same time, yielding a maximum in the step density (a 
global quantity) at half-layer completion and a minimum at layer completion. As 
growth proceeds, however, the rates of completion of monolayers in the different 
sections fall out of phase. This leads to a damping of the oscillations, with the degree 
of damping increasing as the size of a subsection, n, decreases. The effect of n on the 
calculated step density is due to the fact that growth in different subsections falls out 
of phase more quickly for small subsections than for large ones. 
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0 1 2 3 4 5  
Monolayers deposited 

Figure 2. Surface step density for local perfect layer growth as a function of time for 
various values of n, the number of sites in a subsection. N, the total number of sites, is 
infinity. 

In conclusion, modelling of epitaxial growth using the discrete Chapman- 
Kolmogorov equation allows us to derive quantities dependent on the microscopic 
disorder of the surface, such as the surface step density, which are unobtainable from 
knowledge of the coverage alone. Since we obtain the full height distribution function, 
such an approach would also be necessary in a first-principles calculation of RHEED 

intensities from a growing surface, which to date have been attempted only with 
artificial periodic configurations (Kawamura and Maksym 1985, Kawamura er a1 1987). 

One of us (AKM-B) acknowledges the support of the US National Science Foundation 
in the form of a Nato Postdoctoral Fellowship. 
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